Law of Large Numbers
Rules for Means and Variances
Random Variable

A random variable is a variable whose value is a numerical outcome of a random phenomenon.
Mean of a Discrete Random Variable

Suppose that X is a discrete random variable whose distribution is

<table>
<thead>
<tr>
<th>Value of X: x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>...</th>
<th>x_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability: p_1</td>
<td>p_2</td>
<td>p_3</td>
<td>...</td>
<td>p_k</td>
</tr>
</tbody>
</table>

To find the mean of X, multiply each possible value by its probability, then add all the products:

$$
\mu_X = x_1p_1 + x_2p_2 + \ldots + x_kp_k \\
= \sum x_ip_i
$$
The best way to make this decision is by calculating the expected value of each possible outcome.

You multiply the... I sense that we're done here.

You must pretend to be dead. I hope the dead sometimes cover their ears.
Variance of a Discrete Random Variable

Suppose that X is a discrete random variable whose distribution is

<table>
<thead>
<tr>
<th>Value of X:</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>...</th>
<th>x_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability:</td>
<td>p_1</td>
<td>p_2</td>
<td>p_3</td>
<td>...</td>
<td>p_k</td>
</tr>
</tbody>
</table>

and that μ is the mean of X. The variance of X is

$$\sigma_X^2 = (x_1 - \mu_X)^2 p_1 + (x_2 - \mu_X)^2 p_2 + \ldots + (x_k - \mu_X)^2 p_k$$

$$= \sum (x_i - \mu_X)^2 p_i$$

The standard deviation σ_X of X is the square root of the variance.
Law of Large Numbers

Draw independent observations at random from any population with finite mean μ. Decide how accurately you would like to estimate μ. As the number of observations drawn increases, the mean \bar{x} of the observed values eventually approaches the mean μ of the population as closely as you specified and then stays that close.
Rules for Means

- On the math portion of the SAT, the mean score was 510 with a standard deviation of 95. On the verbal portion, the mean score was 530 with a standard deviation of 85. What was the combined mean?
 - Finding a combined mean is relatively simple.
 - If X and Y are two different random variables (such as math score and verbal score), then:

\[
\mu_{X+Y} = \mu_X + \mu_Y
\]

 - That is, simply add the two means.
 - Then the mean combined score is \(510 + 530 = 1040\)
More Rules for Means

- Consider measuring the height of everyone in the class. We obtain a mean of 67 inches and a standard deviation of 3 inches.
 - What if, due to a misplaced measuring stick, we accidentally measured everyone to be 1 inch shorter than they actually were?
 - What would the new mean be?

\[\mu_{a+X} = a + \mu_X \]

- That is, the mean was just an inch smaller than it should have been, so simply add the inch to the mean.
- Then the new mean is 67 + 1 = 68 inches.
More Rules for Means

- Consider measuring the height of everyone in the class. We obtain a mean of 67 inches and a standard deviation of 3 inches.
 - What if we needed to the measurements in centimeters instead of inches (there are 2.54 cm in one inch)?
 - What would the new mean be?

\[\mu_{bX} = b \mu_X \]

- That is, we can simply convert the mean to cm by multiplying by 2.54.
- Then the new mean is 67 (2.54) = 170.18 cm.
More Rules for Means

• Consider measuring the height of everyone in the class. We obtain a mean of 67 inches and a standard deviation of 3 inches.
 – With means you can combine the two previous ideas to arrive at a general rule.

$$\mu_{a+bX} = a + b\mu_X$$

– The moral of the story of means, which seems to be common sense, is:
 • You can add them to one another.
 • You can add a constant to them.
 • You can multiply them by a constant.
Example 7.10 p494

- Linda sells cars and trucks \(X: \# \) cars sold, \(Y: \# \) truck and SUVs sold

- Cars sold: 0 1 2 3
- Probability 0.3 0.4 0.2 0.1

- Vehicles Sold: 0 1 2
- Probability: 0.4 0.5 0.1

- At her commission rate of 25% of gross profits she sells, Linda expects to earn $350 for each car sold and $400 for each truck or SUV sold. Find her expected earnings.

Step 1: Find means for cars sold and vehicles sold
• Step 2: Write equation for earnings:

\[\$ = 350X + 400Y \]

Combine rules for means:

\[U\$ = 350Ux + 400Uy \]

Linda’s best estimate for earnings for the day:
Rules for Variances

• On the math portion of the SAT, the mean score was 510 with a standard deviation of 95. On the verbal portion, the mean score was 530 with a standard deviation of 85. What was the combined standard deviation?
 – Finding a combined standard deviation is more complex.
 – If X and Y are two different independent random variables (such as math score and verbal score), then:

\[
\sigma^2_{X+Y} = \sigma^2_X + \sigma^2_Y
\]

 – That is, you CANNOT add the standard deviations, but you CAN ADD THE VARIANCES!
 – Then the standard deviation of the combined score is:

\[
\sigma^2_{X+Y} = 85^2 + 95^2 \\
\sigma^2_{X+Y} = 7225 + 9025 \\
\sigma^2_{X+Y} = 16250 \\
\sigma_{X+Y} = 127.48
\]
Working with Combined Variables

- On the math portion of the SAT, the mean score was 510 with a standard deviation of 95. On the verbal portion, the mean score was 530 with a standard deviation of 85.
 - We now know the mean of the combined score is 1040 with a standard deviation of 127.48.
 - Given that these are normal distributions, we can do normal calculations with the combined statistics.
 - What is the probability that a random student scored 1100 or better?
 • Normalcdf (1100,9999,1040,127.48) = .3189
 - What score would you need to be in the top 5%?
 • Invnorm (.95,1040,127.48) = 1249.7
More Rules for Variances

• Consider measuring the height of everyone in the class. We obtain a mean of 67 inches and a standard deviation of 3 inches.
 – What if, due to a misplaced measuring stick, we accidentally measured everyone to be 1 inch shorter than they actually were?
 – What would the new standard deviation be?

\[\sigma_{a+X} = \sigma_X \]

– Recall that standard deviation is a measure of spread. How much would the spread change if we just added one to each number in the dataset?
– That is, the spread, and thus standard deviation (and variance) is exactly the same.
– Then the new standard deviation is still 3 inches.
More Rules for Variances

Consider measuring the height of everyone in the class. We obtain a mean of 67 inches and a standard deviation of 3 inches.

– What if we needed to the measurements in centimeters instead of inches (there are 2.54 cm in one inch)?
– What would the new standard deviation be?
– Certainly the data’s spread will increase if we multiply each number in the dataset by 2.54.

\[\sigma_{bX}^2 = b^2 \sigma_X^2 \]

– That is, don’t work with the standard deviation, use the variances. Then, you have to similarly square the constant (2.54) you’re working with as well.
– Then the new standard deviation is 7.62.
More Rules for Variances

• Consider measuring the height of everyone in the class. We obtain a mean of 67 inches and a standard deviation of 3 inches.
 – With standard deviations (and variances) you can combine the two previous ideas to arrive at a general rule.

\[\sigma_{a+bX}^2 = b^2 \sigma_X^2 \]

– The moral of the story of standard deviations is to work with the variances instead:
 • You can add the variances but you cannot add the standard deviations.
 • Add a constant to the variable does not affect the standard deviation or variance.
 • You can multiply the variance by the square of the constant.
Example 7.13 p 497

- Zadie has invested 20% of her funds in T-bills and 80% in an “index fund” that represents all US common stocks. The rate of return of an investment over a time period is the percent change in the price during that time period, plus any income received. If X is the return on T-bills and Y the return on stocks, the portfolio rate of return R is:

 - \(R = 0.2X \) and \(0.8Y \)

- The returns X and Y are random variables because they vary from year to year. Based on returns between 1950 and 2000,

 - \(U_x = 5.0\% \quad SD_x = 2.9\% \quad \text{**Note: Which of these has a greater risk???}}
 - \(U_y = 13.2\% \quad SD_y = 17.6\% \)

- Find the mean and SD of the portfolio return.
• Find the mean of the portfolio:

 \[R = 0.2X + 0.8Y \]

 \[Ur = 0.2Ux + 0.8Uy \]

 \[= 0.2(5.0) + 0.8(13.2) = 11.56\% \]

• The expected return on the portfolio is 11.56\%.
• Can we find the standard deviation of the portfolio?

 – In order to do this we would have to convert to variances and add. This rule is only an option when the events are independent.

 – Are T-bills and stocks independent?